
Java Specialists in Action

Using dynamic proxies to write less code

Introduction

 Heinz Kabutz

 Java Programmer since 1997

 Publisher of The Java™ Specialists’ Newsletter
• http://www.javaspecialists.co.za

 Read in 111 countries by about 20000 Java
developers
• Not for Java beginners 

Questions

 Please please please please ask questions!

 There are some stupid questions

• They are the ones you didn’t ask

• Once you’ve asked them, they are not stupid anymore

 Assume that if you didn’t understand something that it
was my fault

 The more you ask, the more interesting the talk will be

3

Introduction to Topic

 In this talk, we will look at:
• Design Patterns

• Dynamic Proxies in Java

• Soft, Weak and Strong references

 For additional resources, or to find out how
“hi there”.equals(“cheers!”) == true, visit:

• The Java™ Specialists’ Newsletter

• http://www.javaspecialists.co.za

4

Design Patterns

 Mainstream of OO landscape, offering us:
• View into brains of OO experts

• Quicker understanding of
existing designs
 e.g. Visitor pattern used by

Annotation Processing Tool

• Improved communication
between developers

• Readjusting of “thinking mistakes” by developers

5

Vintage Wines

 Design Patterns are like good red wine
• You cannot appreciate them at first

• As you study them you learn the difference between plonk
and vintage, or bad and good designs

• As you become a connoisseur you experience the various
textures you didn’t notice before

 Warning: Once you are hooked, you will no
longer be satisfied with inferior designs

6

Proxy Pattern

 Intent [GoF95]
• Provide a surrogate or

placeholder for another
object to control access
to it.

7

Proxy Structure

8

Types of Proxies

 Virtual Proxy
• creates expensive objects on demand

 Remote Proxy
• provides a local representation for an object in a different

address space

 Protection Proxy
• controls access to original object

We will focus
on this type

9

Approaches to writing proxies

 Handcoded
• Only for the very brave … or foolish

 Autogenerated code
• RMI stubs and skeletons created by rmic

 Dynamic proxies
• Available since JDK 1.3

• Dynamically creates a new class at runtime

• Flexible and easy to use

10

Model for example

 Company creates
moral fibre
“on demand”

11

public class Company {
 // ...
 private final MoralFibre moralFibre; // set in constructor

 public void becomeFocusOfMediaAttention() {
 System.out.println("Look how good we are...");
 cash -= moralFibre.actSociallyResponsibly();
 cash -= moralFibre.cleanupEnvironment();
 cash -= moralFibre.empowerEmployees();
 }

 @Override
 public String toString() {
 Formatter formatter = new Formatter();
 formatter.format("%s has $ %.2f", name, cash);
 return formatter.toString();
 }
}

12

public class MoralFibreImpl implements MoralFibre {
 // very expensive to create moral fibre!
 private byte[] costOfMoralFibre = new byte[900 * 1000];

 { System.out.println("Moral Fibre Created!"); }
 // AIDS orphans
 public double actSociallyResponsibly() {
 return costOfMoralFibre.length / 3;
 }
 // shares to employees
 public double empowerEmployees() {
 return costOfMoralFibre.length / 3;
 }
 // oiled sea birds
 public double cleanupEnvironment() {
 return costOfMoralFibre.length / 3;
 }
}

13

Handcoded Proxy

 Usually results in a lot of effort

 Good programmers have to be lazy
• DRY principle

 Don’t repeat yourself

 Shown just for illustration

14

public class MoralFibreProxy implements MoralFibre {
 private MoralFibreImpl realSubject;
 public double actSociallyResponsibly() {
 return realSubject().actSociallyResponsibly();
 }
 public double empowerEmployees() {
 return realSubject().empowerEmployees();
 }
 public double cleanupEnvironment() {
 return realSubject().cleanupEnvironment();
 }
 private MoralFibre realSubject() {
 if (realSubject == null) { // need some synchronization
 realSubject = new MoralFibreImpl();
 }

 return realSubject;
 }
}

15

import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket0 {
 public static void main(String[] args) throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, new MoralFibreProxy());
 SECONDS.sleep(2); // better than Thread.sleep(2000);
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

16

Dynamic Proxies

 Allows you to write a method call handler
• Is invoked every time any method is called on interface

• Previous approach broken – what if toString() is called?

 Easy to use
• But, seriously underused feature of Java

17

Strong, Soft and Weak References

 Java 1.2 introduced concept of soft and weak
references

 Weak reference is released when no strong
reference is pointing to the object

 Soft reference can be released, but will
typically only be released when memory is low
• Works correctly since JDK 1.4

18

Object Adapter Pattern – Pointers

 References are not transparent

 We make them more transparent by defining a
Pointer interface
• Can then be Strong, Weak or Soft

public interface Pointer<T> {
 void set(T t);
 T get();
}

19

public class StrongPointer<T> implements Pointer<T> {
 private T t;
 public void set(T t) { this.t = t; }
 public T get() { return t; }
}

import java.lang.ref.Reference;
public abstract class RefPointer<T> implements Pointer<T> {
 private Reference<T> ref;
 protected void set(Reference<T> ref) { this.ref = ref; }
 public T get() { return ref == null ? null : ref.get(); }
}

import java.lang.ref.SoftReference;
public class SoftPointer<T> extends RefPointer<T> {
 public void set(T t) { set(new SoftReference<T>(t)); }
}

import java.lang.ref.WeakReference;
public class WeakPointer<T> extends RefPointer<T> {
 public void set(T t) { set(new WeakReference<T>(t)); }
}

20

Using Turbocharged enums

 We want to define enum for these pointers

 But, we don’t want to use switch
• Switch and multi-conditional if-else are anti-OO

• Rather use inheritance, strategy or state patterns

 Enums allow us to define abstract methods
• We implement these in the enum values themselves

21

public enum PointerType {
 STRONG { // these are anonymous inner classes
 public <T> Pointer<T> make() { // note the generics here
 return new StrongPointer<T>();
 }
 },
 WEAK {
 public <T> Pointer<T> make() {
 return new WeakPointer<T>();
 }
 },
 SOFT {
 public <T> Pointer<T> make() {
 return new SoftPointer<T>();
 }
 };

 public abstract <T> Pointer<T> make();
}

22

Danger – References

 References put additional strain on GC

 Only use with large objects

 Memory space preserving measure
• But can severely impact on performance

 Even empty finalize() methods can cause
OutOfMemoryError
• Additional step in GC that runs in separate thread

23

Defining a Dynamic Proxy

 We make a new instance of an interface class
using java.lang.reflect.Proxy:

Object o = java.lang.reflect.Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{ interface to implement },

 implementation of java.lang.reflect.InvocationHandler
);

 The result is an instance of interface to
implement

24

import java.lang.reflect.*;
public class VirtualProxy<T> implements InvocationHandler {
 private final Pointer<T> realSubjectPointer;
 private final Object[] constrParams;
 private final Constructor<? extends T> subjectConstructor;
 public VirtualProxy(Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams,
 PointerType pointerType) {
 try {
 subjectConstructor = realSubjectClass.
 getConstructor(constrParamTypes);
 realSubjectPointer = pointerType.make();
 } catch (NoSuchMethodException e) {
 throw new IllegalArgumentException(e);
 }
 this.constrParams = constrParams;
 }

25

 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 T realSubject;
 synchronized (this) {
 realSubject = realSubjectPointer.get();
 if (realSubject == null) {
 realSubject = subjectConstructor.newInstance(
 constrParams);
 realSubjectPointer.set(realSubject);
 }
 }
 return method.invoke(realSubject, args);
 }
}

 Whenever any method is invoked on the proxy
object, it gets the real subject from the Pointer
and creates it if necessary

26

A word about synchronization

 We need to synchronize whenever we check
the value of the pointer
• Otherwise several realSubject objects could be created

• However, no one else will have a pointer to this object

• Thus, it is fairly safe to synchronize on “this”

 Allegedly double-checked locking idiom was
broken pre-Java 5
• I have personally not seen evidence to support this

27

Proxy Factory

 To simplify our client code, we define a Proxy Factory:
@SuppressWarnings("unchecked") // be very careful of using this!
public class ProxyFactory {
 public static <T> T virtualProxy(Class<T> subjectIntf) { ... }

 public static <T> T virtualProxy(Class<T> subjectIntf,
 PointerType type) { ... }

 public static <T> T virtualProxy(Class<T> subjectIntf,
 Class<? extends T> realSubjectClass, PointerType type) { ... }

 public static <T> T virtualProxy(Class<T> subjectIntf,
 Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams, PointerType type) { ... }

28

Proxy Factory

 We will just show the main ProxyFactory method:
• The other methods send default values to this one

public class ProxyFactory {
 public static <T> T virtualProxy(Class<T> subjectInterface,
 Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams, PointerType type) {
 return (T) Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{subjectInterface},
 new VirtualProxy<T>(realSubjectClass,
 constrParamTypes, constrParams, type));
 }
}

29

import static com.maxoft.proxy.ProxyFactory.virtualProxy;
import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket1 {
 public static void main(String[] args) throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, virtualProxy(MoralFibre.class));
 SECONDS.sleep(2);
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

30

 Weak Pointer is cleared when we don’t have a
strong ref

Company maxsol = new Company("Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, WEAK));
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

// short term memory...
System.gc();
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

31

 Soft Pointer more appropriate

 Company maxsol = new Company("Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, SOFT));
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 maxsol.becomeFocusOfMediaAttention();

 System.gc(); // ignores soft pointer
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 maxsol.becomeFocusOfMediaAttention();

 forceOOME(); // clears soft pointer
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 maxsol.becomeFocusOfMediaAttention();
}
private static void forceOOME() {
 try {byte[] b = new byte[1000000000];}

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
Look how good we are...
java.lang.OutOfMemoryError:
 Java heap space
Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

32

Performance of Dynamic Proxies

N
o

Pr
ox

y

H
ar

dc
od

ed

D
yn

am
ic

 (S
tr

on
g)

D
yn

am
ic

 (W
ea

k)

D
yn

am
ic

 (S
of

t)

2226
105 545353

275

933

Method calls (100000/s)
Standard Deviation

33

Analysis of Performance Results

 Always look at performance in real-life context
• In your system, how often does a method get called per

second?

• What contention are you trying to solve – CPU, IO or
memory?
 Probably the wrong solution for CPU bound contention

 Big deviation for “No Proxy” – probably due to
HotSpot compiler inlining method call.

34

Virtual Proxy Gotchas

 Be careful how you implement equals()
• Should always be symmetric (from JavaDocs):

 For any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true

 Exceptions
• General problem with proxies

 Local interfaces vs. remote interfaces in EJB

• Were checked exceptions invented on April 1st ?

35

Checkpoint

 We’ve looked at the concept of a Virtual Proxy
based on the GoF pattern

 We have seen how to implement this with
dynamic proxies (since JDK 1.3)

 We have also looked at Soft and Weak refs

 Lastly, we were unsurprised that dynamic
proxy performs worse than handcoded proxy

36

Further uses of Dynamic Proxy

 Protection Proxy
• Only route the call when caller has the correct security

context
 Similar to the “Personal Assistant” pattern

 Dynamic Decorator or Filter
• We can add functions dynamically to an object

• See http://www.javaspecialists.co.za/archive/Issue034.html

• Disclaimer: I tried to read it today, and don’t understand it either

37

Dynamic Object Adapter

 Based on Adapter pattern by GoF

 Plain Object Adapter has some drawbacks:
• Sometimes you want to adapt an interface, but only want

to override some methods

• E.g. java.sql.Connection

 Structurally, the patterns Adapter, Proxy,
Decorator and Composite are almost identical

38

Object Adapter Structure (GoF)

39

 We delegate the call if the adapter has a method with
this signature

 Objects adaptee and adapter can be of any type

public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 try {
 // find out if the adpter has this method
 Method other = adaptedMethods.get(// only declared methods
 new MethodIdentifier(method));
 if (other != null) { // yes it has
 return other.invoke(adapter, args);
 } else { // no it does not
 return method.invoke(adaptee, args);
 }
 } catch (InvocationTargetException e) {
 throw e.getTargetException();
 }
}

40

 The ProxyFactory now get a new method:

public class ProxyFactory {
 public static <T> T adapt(Object adaptee,
 Class<T> target,
 Object adapter) {
 return (T) Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{target},
 new DynamicObjectAdapter<T>(adapter, adaptee));
 }
}

41

 Client can now adapt interfaces very easily

import static com.maxoft.proxy.ProxyFactory.*;

// ...

Connection con = DriverManager.getConnection("...");
Connection con2 = adapt(con, Connection.class,
 new Object() {
 public void close() {
 System.out.println("No, do not close connection");
 }
 });

 For additional examples of this technique, see
• http://www.javaspecialists.co.za/archive/Issue108.html

42

Benefits of Dynamic Proxies

 Write once, use everywhere

 Single point of change

 Elegant coding on the client
• Esp. combined with static imports & generics

 Slight performance overhead
• But view that in context of application

43

Demo

 Short demonstration using Dynamic Virtual
Proxy for new interface

Conclusion

 Thank you very much for listening to me 

 In my experience, Dynamic Proxies are easy to
use

 Look for applications where they are
appropriate

Audience Response

Question?

